Những câu hỏi liên quan
Trúc Giang
Xem chi tiết
Nguyễn Việt Lâm
29 tháng 7 2021 lúc 17:49

\(a^2+b^2=\left(a+b-c\right)^2=a^2+\left(b-c\right)^2+2a\left(b-c\right)=b^2+\left(a-c\right)^2+2b\left(a-c\right)\)

\(\Rightarrow\left\{{}\begin{matrix}b^2=\left(b-c\right)^2+2a\left(b-c\right)\\a^2=\left(a-c\right)^2+2b\left(a-c\right)\end{matrix}\right.\)

\(\Rightarrow\dfrac{a^2+\left(a-c\right)^2}{b^2+\left(b-c\right)^2}=\dfrac{\left(a-c\right)^2+2b\left(a-c\right)+\left(a-c\right)^2}{\left(b-c\right)^2+2a\left(b-c\right)+\left(b-c\right)^2}\)

\(=\dfrac{\left(a-c\right)\left(a+b-c\right)}{\left(b-c\right)\left(b+a-c\right)}=\dfrac{a-c}{b-c}\) (đpcm)

Bình luận (1)
Phan PT
Xem chi tiết
Hoàng Tử Hà
6 tháng 2 2021 lúc 16:17

Thử nhé

Vì P là bất đẳng thức đối xứng nên dự đoán điểm rơi \(x=y=z=\dfrac{\sqrt{2021}}{3}\)

Thay vo P ta duoc \(P=4.\sqrt{2021}\)

----------------------------------------------------------

\(P=\sum\dfrac{\left(x+y\right)\sqrt{\left(y+z\right)\left(z+x\right)}}{z}\)

Cauchy-Schwarz:

\(\Rightarrow\left(y+z\right)\left(z+x\right)\ge\left(z+\sqrt{xy}\right)^2\Rightarrow\sqrt{\left(y+z\right)\left(z+x\right)}\ge z+\sqrt{xy}\)

\(\Rightarrow P\ge\sum\dfrac{\left(x+y\right)\left(z+\sqrt{xy}\right)}{z}\ge\sum\dfrac{xz+yz+x\sqrt{y}+y\sqrt{x}}{z}=\sum x+y+\dfrac{\left(x+y\right)\sqrt{xy}}{z}\ge\sum x+y+\dfrac{2xy}{z}\)

\(\Rightarrow P\ge2(x+y+z)+2\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\)

Cauchy-Schwarz: \(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\ge\left(\sqrt{\dfrac{xy}{z}.\dfrac{yz}{z}}+\sqrt{\dfrac{yz}{x}.\dfrac{zx}{y}}+\sqrt{\dfrac{zx}{y}.\dfrac{xy}{z}}\right)^2=\left(x+y+z\right)^2\)

\(\Rightarrow P\ge2(x+y+z)+2\left(x+y+z\right)=4\left(x+y+z\right)=4\sqrt{2021}\)

\("="\Leftrightarrow x=y=z=\dfrac{\sqrt{2021}}{3}\)

Bình luận (0)
Xem chi tiết
Bla bla bla
Xem chi tiết
Nguyễn Lê Phước Thịnh
17 tháng 9 2023 lúc 8:29

\(P=\dfrac{x\left(\sqrt{y}-\sqrt{z}\right)-y\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}+\dfrac{z}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{x\sqrt{y}-x\sqrt{z}-y\sqrt{x}+y\sqrt{z}+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)-\sqrt{z}\left(x-y\right)+z\left(\sqrt{x}-\sqrt{y}\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{xy}-\sqrt{z}\left(\sqrt{x}+\sqrt{y}\right)+z\right)}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{xy}-\sqrt{zx}-\sqrt{zy}+z\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\sqrt{x}\left(\sqrt{y}-\sqrt{z}\right)-\sqrt{z}\left(\sqrt{y}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

\(=\dfrac{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{x}-\sqrt{z}\right)}{\left(\sqrt{x}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{z}\right)}\)

=1

Bình luận (0)
Fidget Spinner
Xem chi tiết
DƯƠNG PHAN KHÁNH DƯƠNG
28 tháng 6 2018 lúc 8:55

Ta có :

\(\left\{{}\begin{matrix}a+y^2=xy+yz+zx+y^2=\left(x+y\right)\left(y+z\right)\\a+z^2=xy+yz+zx+z^2=\left(x+z\right)\left(y+z\right)\\a+x^2=xy+yz+zx+x^2=\left(x+y\right)\left(x+z\right)\end{matrix}\right.\)

Do đó :

\(VT=x\sqrt{\dfrac{\left(x+y\right)\left(y+z\right)\left(x+z\right)\left(y+z\right)}{\left(x+y\left(x+z\right)\right)}}+y\sqrt{\dfrac{\left(x+z\right)\left(y+z\right)\left(x+y\right)\left(x+z\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\dfrac{\left(x+y\right)\left(x+z\right)\left(x+y\right)\left(y+z\right)}{\left(x+z\right)\left(y+z\right)}}\)

\(=x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\)

\(=2\left(xy+yz+zx\right)\)

\(=2a\) ( đpcm )

Bình luận (0)
kietdvjjj
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 7 2021 lúc 19:59

a.

\(\dfrac{x}{x+\sqrt{3x+yz}}=\dfrac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\dfrac{x}{x+\sqrt{\left(x+y\right)\left(z+x\right)}}\le\dfrac{x}{x+\sqrt{\left(\sqrt{xz}+\sqrt{xy}\right)^2}}\)

\(\Rightarrow\dfrac{x}{x+\sqrt{3x+yz}}\le\dfrac{x}{x+\sqrt{xy}+\sqrt{xz}}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Tương tự:

\(\dfrac{y}{y+\sqrt{3y+xz}}\le\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\) ; \(\dfrac{z}{z+\sqrt{3z+xy}}\le\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)

Cộng vế:

\(VT\le\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{y}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}+\dfrac{\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z=1\)

Bình luận (0)
Nguyễn Việt Lâm
26 tháng 7 2021 lúc 20:01

b.

\(VP=\dfrac{4\left(a+b+c\right)}{2\sqrt{4a\left(a+3b\right)}+2\sqrt{4b\left(b+3c\right)}+2\sqrt{4c\left(c+3a\right)}}\)

\(VP\ge\dfrac{4\left(a+b+c\right)}{4a+a+3b+4b+b+3c+4c+c+3a}\)

\(VP\ge\dfrac{4\left(a+b+c\right)}{8\left(a+b+c\right)}=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(a=b=c\)

Bình luận (0)
Vũ Hoài Thu
Xem chi tiết
Akai Haruma
29 tháng 5 2023 lúc 18:26

Chứng minh gì bạn?

Bình luận (0)
Đinh Thị Ngọc Anh
Xem chi tiết
Neet
13 tháng 5 2017 lúc 20:34

Áp dụng bất đẳng thức cauchy:

\(P=\sum\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}\ge\sum\dfrac{2x^2\sqrt{yz}}{y\sqrt{y}+2z\sqrt{z}}=\sum\dfrac{2\sqrt{x^3}\sqrt{xyz}}{\sqrt{y^3}+2\sqrt{z^3}}=\sum\dfrac{2\sqrt{x^3}}{\sqrt{y^3}+2\sqrt{z^3}}\)(vì xyz=1).

đặt \(\left\{{}\begin{matrix}\sqrt{x^3}=a\\\sqrt{y^3}=b\\\sqrt{z^3}=c\end{matrix}\right.\)(\(a,b,c>0\))thì giả thiết trở thành cho abc=1. tìm Min \(P=\dfrac{2a}{b+2c}+\dfrac{2b}{c+2a}+\dfrac{2c}{a+2b}\)

Áp dụng BĐT cauchy-schwarz:

\(P=2\left(\dfrac{a^2}{ab+2ac}+\dfrac{b^2}{bc+2ab}+\dfrac{c^2}{ac+2bc}\right)\ge\dfrac{2\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge\dfrac{2\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=2\)( AM-GM \(3\left(ab+bc+ca\right)\le\left(a+b+c\right)^2\))

Dấu = xảy ra khi a=b=c=1 hay x=y=z=1

Bình luận (0)
đấng ys
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 1 2022 lúc 12:28

Đề bài sai, biểu thức này ko có min

Bình luận (3)